|l want to do

You likely want to use an introduction rule.
This constructs the statement you are trying to prove.

v

What does your goal look like?

and/bi-implication introduction
split_goal
will split up your goal into its corresponding subparts

implication introduction
assume ha

will add a hypothesis ha into your context, remains to show B

or introduction

left/right
will reduce the goal to showing one side of the disjunction

negation introduction
assume ha

to show that something does not hold, we show that if it did, a
contradiction would follow. Likely later in your proof you will use
the contradiction tactic.

existential introduction
existsi x

will reduce the goal to showing this holds for a specific x

universal introduction
fix x
we fix an arbitrary x, and need to show this holds regardless

reflexivity
will close a goal that is an equals statement that is true by
reflexivity

extensionality
will change the goaltoV x, X € A « X € B, whichis the
set-element method

set_simplify
will rewrite set operations as logical operations

linarith

solves equalities and inequalities involving your hypotheses
polyrith

solves equalities with polynomials (variables multiplied)
numbers

solves facts about numbers

positivity

solves something about comparison with 0

basic_induction
inducts on your goal with standard induction, splits goal into a
base case and inductive step

strong_induction

inducts on your goal with strong induction, splits goal into a
base case and inductive step where your inductive hypothesis
isintheformV m < n, Pm

induction_from_starting_point
inducts on your goal with standard induction, splits goal into a
base case and inductive step, except the base case starts at

in my (cs22) Lean proof but | don’t know what tactic to use!

a flowchart of which tactics to use and when to use them

You likely want to use an elimination rule.

This extracts information from your existing hypotheses.

v

What do your hypotheses look like?

' hab A ANB
|

fmmmsee -
' hab A v B
|

fmmmsee -
' hab : A « B
|

~ hab : A - B
, ha A

: hna : -A

| ha A

and elimination

eliminate hab with ha hb
will split up your hypothesis into its corresponding subparts

or elimination

eliminate hab with ha hb

will split up your hypothesis into two cases, after which two goals

will remain, proving when A is true, and proving when B is true

bi-implication elimination
eliminate hab with hab hba
will split up your hypothesis into its left and right implications

implication elimination (modus ponens)

have hb := hab ha
given you know A and A - B, will add a hypothesis for B. This is
also known as modus ponens.

negation elimination
contradiction

if you have —A and A in your hypotheses, this is a contradiction,
so this immediately closes your goal

existential elimination
eliminate hex with e he

will extract a witness out of an extistential statement and a proof
that the witness satisfies the proposition

universal elimination

have hpx := hall x

will produce a hypothesis of P X from a universal quantification
and a specific such value x we wish to apply it on. This is going
from a general statement to a specific one.

for complete documentation please refer to docs.cs22.io

dsimp definition
will unfold a definition in your goal. For example, dsimp
dvd will apply the definition of “divides”

rewrite hmn
if hmn: m = n, this will replace all m with n in your goal. To
do the other direction, use rewrite <hmn

If you want to use these on a definition on a hypothesis,
say h, you should add at h at the end of the tactic, like
rewrite hmn at h ordsimp definition at h

assumption
will close your goal! check if you have any additional goals
that remain to be shown

